Ishida Lab.

Welcome to
the Ishida lab

TL;DR We are a young interdisciplinary team of chemists, physicists, microscopists, and biologists at the interdisciplinary graduate school of engineering sciences, kyushu university. unlocking the secrets of life's extraordinary chemical phenomena, such as photosynthetic reactions, enzyme processes, and genetic mechanisms, we recognize the pivotal role of proteins as chemical reaction fields in the living systems. we aim to replicate such functionality of proteins in life and to propose the concept of "inorganic proteins”, envisioning them as dynamic entities capable of orchestrating diverse chemical phenomena at will. our pursuit is centered on the discovery of novel principles and the application of cutting-edge technology, with the goal of revolutionizing the realms of energy, environment, and life sciences.

More about our
Research or are you
interested in Join us ??

TEAM

STAFF

  • Yohei Ishida
    Principal Investigator, Associate Professor

  • Michiyo Hinago
    Tech

STUDENTS

  • Shohei Yamaguchi
    Undergraduate

Alumni

Kunihiro Narita, PhD, 2016–2022 @ Hokkaido Univ.
Zhong Huang, PhD, 2016–2019 @ Hokkaido Univ.
Ikumi Akita, PhD, 2015–2021 @ Hokkaido Univ.
Ryan D. Corpuz, PhD, 2014-2017 @ Hokkaido Univ.

VACANCIES

Position available here

RESEARCH

“Ultimately, when you look at any biological question it becomes a chemical problem”
– Venkatraman Ramakrishnan. Nobel Prize in Chemistry, 2009

Life is the most amazing phenomenon in the world around us. yet, we don’t understand how it works or where it comes from. ‘understanding, mimicking, and surpassing life!’ is the grand challenge that drives all our research. our focus lies in replicating the chemical reaction field functionality of proteins, and in building the "inorganic proteins”, envisioning them as dynamic entities capable of orchestrating diverse chemical phenomena at will. currently, we are actively engaged in four main projects, each contributing to the exploration and application of this concept.

Keywords
Artificial Photosynthesis, Photochemistry / Photocatalysis, Electron Transfer, Försterresonance Energy Transfer (FRET), Supramolecular Assembly
Materials
Inorganic Nanosheets, Clay Minerals, Organic Dyes, Quantum Dots / Metal Nanoparticles / Clusters With Atomic Purity, Proteins / Enzymes
Techniques
Organic / Inorganic Synthesis, Electron Microscopy, Laser Spectroscopy

Project 01

Inorganic Leaf /
Artificial Photosynthesis

In the face of a critical energy crisis stemming from the massive consumption of fossil resources and simultaneous concerns about climate change due to substantial CO2 emissions, harnessing solar energy as a new source has become an urgent challenge crucial for the survival of humanity. while the photosynthetic reactions in plants exhibit an ideal system, efficiently converting solar energy into material transformations, the key lies in the advanced "field" provided by proteins. adopting this perspective, we have successfully pioneered unique control methodologies for reaction fields, replicating a portion of the photosynthetic system. our ongoing efforts aim to expand upon this achievement, addressing global-scale challenges such as energy crises and concerns related to climate change and global warming.

Project 02

Imaging of single organic molecules and their assemblies

How do we evaluate molecular assemblies? the molecular assemblies we are pursuing are highly flexible and lack crystallinity, making traditional methods such as x-ray, nmr, and spectroscopy interpret vast amounts of averaged information about the molecules. however, these techniques often fall short in providing detailed insights, leaving questions unanswered. what are the distances between individual molecules? what are their orientations? do interactions occur even between distant molecules? how does the molecular structure change based on the local environment of the inorganic protein, which serves as the host? to address these queries, we are undertaking the challenge of developing innovative methods, utilizing atomic-resolution electron microscopy equipment, to observe the previously unattainable one-molecule-level structures and electronic states.

Project 03

Manipulating proteins with inorganic proteins

Our ability to manipulate artificial reaction fields extends to large molecules, specifically proteins. by modifying the functions of captured proteins, we aim to achieve various technological applications in the life sciences. this includes high-temperature stabilization of commonly heat-sensitive protein formulations, preservation of proteins through spatial isolation to prevent deactivation by aggregation, stable enzyme reactions in organic solvents, and the development of novel enzyme reactions through protein structural changes. our focus is on applying these techniques to advance technology in the field of life sciences.

Project 04

Inorganic Life /
Origin of Life

What is life? we perceive the fundamental essence of life phenomena as the transmission of chemical information and its evolution. while it is known that approximately 4 billion years ago, the primitive earth harbored "ingredients of life" such as amino acids, nucleic acid bases, and carbohydrates, the spontaneous evolution from such simple organic molecules to dna/rna seems challenging to comprehend. there is speculation that an initial form of genetic material, a "precursor to dna/rna responsible for primitive information storage – a less functional degraded version of genes," may have existed. we dare to dream that clay minerals, abundantly present in the early earth environment, might have served as the precursors to genes, challenging ourselves to create a concept of "inorganic life" through an information transfer system based on inorganic substances. this endeavor not only contributes to unraveling the origins of organic life some 4 billion years ago but also opens the possibility of constructing inorganic information processing systems vastly different from the computers we know today.

Fundings / Supports

  • JSPS Grant-in-Aid for Scientific Research (C); 2021–2023
  • Tokyo Ohka Foundation for The Promotion of Science and Technology; 2023
  • TEPCO Memorial Foundation Basic Research Grant; 2022–2023 + 2024–2026
  • 7 others are in progress.

PUBLICATIONS

Original papers

  1. 1.

    Hoque, M. M.; Black, D. M.; Castellanos, L.; Ishida, Y.; Vachet, R. W.; Whetten, R. L. “Electrospray charging patterns enable precise characterization of high-mass gold nanoclusters by [HPLC]-ESI-MS” Comm. Chem. 2024, xx, xxx–xxx. DOI:

  2. 2.

    Lee, D.; Ishida, Y.; Yonezawa, T. “Unexpected Reactivity of Cationic-to-Cationic Thiolate Ligand-Exchange Reaction on Au25 Clusters” Langmuir 2023, 39, 8435–8440. DOI: 10.1021/acs.langmuir.3c00499. link

  3. 3.

    Akita, I.; Ishida, Y.; Yonezawa, T. “Mixed Metal-Atom Markers Enable Simultaneous Imaging of Spatial Distribution in Two-Dimensional Heterogeneous Molecular Assembly by Scanning Transmission Electron Microscopy” ACS Meas. Sci. Au 2022, 2, 542−546. DOI: 10.1021/acsmeasuresciau.2c00043. link

  4. 4.

    Narita, K.; Ishida, Y.; Nukui, S.; Huang, Z.; Yonezawa, T. “Surface Menshutkin SN2 Reaction on Basic Gold Clusters Provides Novel Opportunities for the Cationization and Functionalization of Molecular Metal Clusters” J. Phys. Chem. Lett. 2021, 12, 11761–11765. DOI: 10.1021/acs.jpclett.1c03498. link 【Supplemental Cover Art】

  5. 5.

    Akita, I.; Ishida, Y.; Yonezawa, T. “Direct Imaging of Individual Organic Molecules in Supramolecular Assembly Strongly Fixed via Multivalent Electrostatic Interactions” J. Phys. Chem. C 2021, 125, 4917–4923. DOI: 10.1021/acs.jpcc.1c00738. link

  6. 6.

    Akita, I.; Ishida, Y.; Yonezawa, T. “Distinctive Stability of a Free-Standing Monolayer Clay Mineral Nanosheet via Transmission Electron Microscopy” Phys. Chem. Chem. Phys. 2020, 22, 25095–25102. DOI: 10.1039/D0CP04659K. link

  7. 7.

    Akita, I.; Ishida, Y.; Yonezawa, T. “Atomic-Scale Imaging of a Free-Standing Monolayer Clay Mineral Nanosheet Using Scanning Transmission Electron Microscopy” J. Phys. Chem. Lett. 2020, 11, 3357–3361. DOI: 10.1021/acs.jpclett.0c00758. link 【Supplemental Cover Art】

  8. 8.

    Akita, I.; Ishida, Y.; Yonezawa, T. “Counting the Layer Number of Free-Standing Montmorillonite Nanosheets using Annular Dark Field Scanning Transmission Electron Microscopy” Clay Sci. 2019, 23, 41–45. DOI: 10.11362/jcssjclayscience.23.3 41. link

  9. 9.

    Huang, Z.; Ishida, Y.; Yonezawa, T. “Basic [Au₂₅(SCH₂CH₂Py)₁₈]·Na+ Clusters: Synthesis, Layered Crystallographic Arrangement, and Unique Surface Protonation” Angew. Chem. Int. Ed. 2019, 58, 13411–13415. DOI: 10.1002/ange.201908905. link

  10. 10.

    Narita, K.; Ishida, Y.; Yonezawa, T.; Huang, Z. “Super Polycationic Molecular Compounds: Au144 (SR+)60 Clusters” J. Phys. Chem. C 2019, 123, 21768–21773. DOI: 10.1021/acs.jpcc.9b05319. link

  11. 11.

    Ishida, Y.; Suzuki, J.; Akita, I.; Yonezawa, T. “Ultra-rapid Cationization of Gold Nanoparticles via a Single-step Ligand Exchange Reaction” Langmuir 2018, 34, 10668−10672. DOI: 10.1021/acs.langmuir.8b02226. link 【ACS Editors’ Choice】

  12. 12.

    Ishida, Y.; Morita, M.; Tokunaga, T.; Yonezawa, T. “Sputter Deposition Towards Short Cationic Thiolated Fluorescent Gold Nanoclusters: Investigation of their Unique Structural and Photophysical Characteristics Using High-Performance Liquid Chromatography” Langmuir 2018, 34, 4024–4030. DOI: 10.1021/acs.langmuir.8b00067. link

  13. 13.

    Huang, Z.; Ishida, Y.; Narita, K.; Yonezawa, T. “Kinetics of Cationic-Ligand-Exchange Reactions in Au25 Nanoclusters” J. Phys. Chem. C 2018, 122, 18142–18150. DOI: 10.1021/acs.jpcc.8b05371. link

  14. 14.

    Cempel, D.; Nguyen, M. T.; Ishida, Y.; Tokunaga, T.; Yonezawa, T. “Ligand Free Green Plasma-in-Liquid Synthesis of Au/Ag Alloy Nanoparticles” New J. Chem. 2018, 42, 5680–5687. DOI: 10.1039/C7NJ05154A. link

  15. 15.

    Cempel, D.; Nguyen, M. T.; Ishida, Y.; Yonezawa, T. “L-arginine Stabilized Highly Uniform Ag Nanoparticles Prepared in Microwave Induced Plasma-in-Liquid Process (MWPLP)” Bull. Chem. Soc. Jpn. 2018, 91, 362–367. DOI: 10.1246/bcsj.20170327. link

  16. 16.

    Ishida, Y.; Akita, I.; Pons, T.; Yonezawa, T.; Hildebrandt, N. “Real-Space Investigation of Energy Transfer Through Electron Tomography” J. Phys. Chem. C 2017, 121, 28395–28402. DOI: 10.1021/acs.jpcc.7b10628. link

  17. 17.

    Ishida, Y.; Motono, S.; Doshin, W.; Tokunaga, T.; Tsukamoto, H.; Yonezawa, T. “Small Nanosized Oxygen-Deficient Tungsten Oxide Particles; Mechanistic Investigation with Controlled Plasma Generation in Water for Their Preparation” ACS Omega 2017, 2, 5104–5110. DOI: 10.1021/acsomega.7b00986. link

  18. 18.

    Corpuz, R. D.; Ishida, Y.; Nguyen, M. T.; Yonezawa, T. “Synthesis of Positively Charged Photoluminescent Bimetallic Au-Ag Nanoclusters by Double Target Sputtering Method on a Biocompatible Polymer Matrix” Langmuir 2017, 33, 9144–9150. DOI: 10.1021/acs.langmuir.7b02011. link

  19. 19.

    Juan, L. M. Z.; Nguyen, M. T.; Yonezawa, T.; Tokunaga, T.; Tsukamoto, H.; Ishida, Y. “Structural Control Parameters for Formation of Single-Crystalline β-Sn Nanorods in Organic Phase” Cryst. Growth Des. 2017, 17, 4554–4562. DOI: 10.1021/acs.cgd.7b00227. link

  20. 20.

    Corpuz, R. D.; Ishida, Y.; Yonezawa, T. “Synthesis of Cationically Charged Photoluminescent Coinage Metal Nanoclusters by Sputtering over Liquid Polymer Matrix” New J. Chem. 2017, 41, 6828–6833. DOI: 10.1039/C7NJ01369H. link

  21. 21.

    Ishida, Y.; Huang, Y.-L.; Yonezawa, T.; Narita, K. “Charge Neutralization Strategy: A Novel Synthetic Approach to Fully Cationized Thiolate-Protected Au25(SR+)18 Clusters with Atomic Precision” ChemNanoMat 2017, 3, 298–302. DOI: 10.1002/cnma.201700012. link

  22. 22.

    Ishida, Y.; Nakabayashi, R.; Corpuz, R. D.; Yonezawa, T. “Water-Dispersible Fluorescent Silver Nanoparticles via Sputtering Deposition over Liquid Polymer Using a Very Short Thiol Ligand” Colloid Surf. A 2017, 518, 25–29. DOI: 10.1016/j.colsurfa.2017.01.022. link

  23. 23.

    Nishimoto, M.; Yonezawa, T.; Cempel, D.; Nguyen, M. T.; Ishida, Y.; Tsukamoto, H. “Effect of H2O2 on Au Nanoparticle Preparation Using Microwave-Induced Plasma in Liquid” Mater. Chem. Phys. 2017, 193, 7–12. DOI: 10.1016/j.matchemphys.2017.02.009 link

  24. 24.

    Porta, M.; Nguyen, M. T.; Yonezawa, T.; Tokunaga, T.; Ishida, Y.; Tsukamoto, H.; Shishino, Y.; Hatakeyama, Y. “Titanium Oxide Nanoparticle Dispersions in a Liquid Monomer and Solid Polymer Resin Prepared by Sputtering” New J. Chem. 2016, 40, 9337–9343. DOI: 10.1039/C6NJ01624C. link

  25. 25.

    Porta, M.; Nguyen, M. T.; Ishida, Y.; Yonezawa, T. “Highly Stable and Blue-emitting Copper Nanocluster Dispersion Prepared by Magnetron Sputtering over Liquid Polymer Matrix” RSC Adv. 2016, 6, 105030–105034. DOI: 10.1039/C6RA17291A. link

  26. 26.

    Porta, M.; Nguyen, M. T.; Tokunaga, T.; Ishida, Y.; Liu, W.-R. ; Yonezawa, T. “Matrix Sputtering into Liquid Mercaptan: From Blue-Emitting Copper Nanoclusters to Red-Emitting Copper Sulfide Nanoclusters” Langmuir 2016, 32, 12159–12165. DOI: 10.1021/acs.langmuir.6b03017. link

  27. 27.

    Ishida, Y.; Narita, K.; Yonezawa, T.; Whetten, R. L. “Fully-Cationized Gold Clusters: Synthesis of Au25(SR+)18J. Phys. Chem. Lett. 2016, 7, 3718–3722. DOI: 10.1021/acs.jpclett.6b01725. link

  28. 28.

    Ishida, Y.; Akita, I.; Sumi, T.; Matsubara, M.; Yonezawa, T. “Thiolate–Protected Gold Nanoparticles Via Physical Approach: Unusual Structural and Photophysical Characteristics” Sci. Rep. 2016, 6, 29928:1–14. DOI: 10.1038/srep29928. link

  29. 29.

    Ishida, Y.; Ramasamy, E.; Shimada, T.; Ramamurthy, V.; Takagi, S. “Room Temperature Phosphorescence from a Guest Molecule Confined in Restrictive Space of an Organic–Inorganic Supramolecular Assembly” Photochem. Photobiol. Sci. 2016, 15, 959–963. DOI: 10.1039/C6PP00124F. link

  30. 30.

    Akita, I.; Ishida, Y.; Yonezawa, T. “Ligand Effect on the Formation of Gold Nanoparticles via Sputtering Deposition over a Liquid Matrix” Bull. Chem. Soc. Jpn. 2016, 89, 1054–1056. DOI: 10.1246/bcsj.20160187. link

  31. 31.

    Ishida, Y.; Udagawa, S.; Yonezawa, T. “Understanding the Primary and Secondary Aggregation States of Sputtered Silver Nanoparticles in Thiolate Matrix and Their Immobilization in Resin” Colloid Surf. A 2016, 504, 437–441. DOI: 10.1016/j.colsurfa.2016.05.035 link

  32. 32.

    Ishida, Y.; Udagawa, S.; Yonezawa, T. “Growth of Sputtered Silver Nanoparticles on a Liquid Mercaptan Matrix with Controlled Viscosity and Sputter Rate” Colloid Surf. A 2016, 498, 106–111. DOI: 10.1016/j.colsurfa.2016.03.044. link 

  33. 33.

    Nguyen, M. T.; Shirai, H.; Tiankanon, C.; Tsukamoto, H.; Ishida, Y.; Yonezawa, T. “Reproducible Shape Control of Single-Crystal SnO Micro Particles” RSC Adv. 2016, 6, 26725-26733. DOI: 10.1039/c5ra25676c link 

  34. 34.

    Cempel, D.; Nguyen, M. T.; Ishida, Y.; Tsukamoto, H.; Shirai, H.; Wang, Y.; Wu, K. C.-W.; Yonezawa, T. “Au nanopaticles prepared using a coated electrode in plasma-in-liquid process: Effect of the solution pH” J. Nanosci. Nanotech. 2016, 6, 9257–9262. DOI: 10.1166/jnn.2016.12923. link

  35. 35.

    Shirai, H.; Nguyen, M. T.; Ishida, Y.; Yonezawa, T. “A New Approach for Additive-free Room Temperature Sintering of Conductive Patterns Using Polymer-stabilized Sn Nanoparticles” J. Mater. Chem. C 2016, 4, 2228–2234. DOI: 10.1039/c6tc00161k. link

  36. 36.

    Corpuz, R. D.; Ishida, Y.; Yonezawa, T. “Controlling an electrostatic repulsion by oppositely charged surfactants towards positively charged fluorescent gold nanoclusters” Phys. Chem. Chem. Phys. 2016, 18, 8773–8776. DOI: 10.1039/C6CP00538A. link

  37. 37.

    Fujimura, T.; Ramasamy, E.; Ishida, Y.; Shimada, T.; Takagi, S.; Ramamurthy, V. “Sequential Energy and Electron Transfer in a Three-component System Aligned on a Clay Nanosheet” Phys. Chem. Chem. Phys. 2016, 18, 5404–5411. DOI: 10.1039/C5CP06984J. link

  38. 38.

    Liao, Y.-T.; Chen, J. E.; Ishida, Y.; Yonezawa, T.; Chang, W. C.; Alshehri, S. M.; Yamauchi, Y.; Wu, K. C.-W. “De Novo Synthesis of Gold-Nanoparticle-Embedded, Nitrogen-Doped Nanoporous Carbon Nanoparticles (Au@NC) with Enhanced Reduction Ability” ChemCatChem 2015, 8, 502–509. DOI: 10.1002/cctc.201501020. link

  39. 39.

    Matsubara, M.; Yonezawa, T.; Minoshima, T.; Tsukamoto, H.; Yong, Y.; Ishida, Y.; Nguyen, M. T.; Tanaka, H.; Okamoto, K.; Osaka, T. “Proton-assisted Low-temperature Sintering of Cu Fine Particles Stabilized by a Proton-initiating Degradable Polymer” RSC Adv. 2015, 5, 102904–102910. DOI: 10.1039/c5ra21402e. link

  40. 40.

    Ishida, Y.; Chaiyathat, L.; Yonezawa, T. “A Novel Physical Approach for Cationic-Thiolate Protected Fluorescent Gold Nanoparticles” Sci. Rep. 2015, 5, 15372–15377. DOI: 10.1515/pac-2014-0906. link

  41. 41.

    Ishida, Y.; Motokane, Y.; Tokunaga, T.; Yonezawa, T. “Plasma-Induced Tungsten Doping of TiO2 Nanoparticles for Enhanced Photocatalysis using Visible Light” Phys. Chem. Chem. Phys. 2015, 17, 24556–24559. DOI: 10.1039/c5cp03400k. link

  42. 42.

    Ishida, Y.; Sumi, T.; Yonezawa, T. “Sputtering Synthesis and Optical Investigation of Octadecanethiol–Protected Fluorescent Au Nanoparticles” New J. Chem. 2015, 39, 5895–5897. DOI: 10.1039/C5NJ01011J. link

  43. 43.

    Lu, X.; Ishida, Y.; Mishina, T.; Nguyen, M. T.; Yonezawa, T. “Enhanced Terahertz Emission from CuxO/Metal Thin Film Deposited on Columnar-Structured Porous Silicon” Bull. Chem. Soc. Jpn. 2015, 88, 1385–1387. DOI: 10.1246/bcsj.20150173. link 

  44. 44.

    Lu, X.; Ishida, Y.; Nguyen, M. T.; Yonezawa, T. “Synthesis and Fluorescence Properties of Nanoisland-Structured SiOx/CuxO Composite” J. Mater. Chem. C 2015, 3, 8358–8363. DOI: 10.1039/C5TC01685A. link

  45. 45.

    Lu, X.; Ishida, Y.; Yonezawa, T. “Synthesis and Fluorescence Property of Columnar Porous Silicon: the Influence of Cu-Coating on Photoluminescence Behaviours from Hydrofluoric-Acid-Treated Aged Columnar Porous Silicon” New J. Chem. 2015, 39, 6267–6273. DOI: 10.1039/C5NJ00909J. link

  46. 46.

    Ishida, Y.; Doshin, W.; Tsukamoto, H.; Yonezawa, T. “Black TiO2 Nanoparticles by a Microwave-induced Plasma over Titanium Complex Aqueous Solution” Chem. Lett. 2015, 44, 1327–1329. DOI: 10.1246/cl.150531. link

  47. 47.

    Ishida, Y.; Jirasupangkul, T.; Yonezawa, T.“One-Pot Preparation of Cationic Charged Pt Nanoparticles Through an Autocatalytic Hydrolysis of Acetylthiocholine” New J. Chem. 2015, 39, 4214–4217. DOI: 10.1039/C5NJ00420A. link

  48. 48.

    Ishida, Y.; Nakabayashi, R.; Matsubara, M.; Yonezawa, T. “Silver Sputtering into Liquid Matrix Containing Mercaptans: the Systematic Size Control of Silver Nanoparticles in Single Nanometer–Orders” New J. Chem. 2015, 39, 4227-4230. DOI: 10.1039/C5NJ00294J. link

  49. 49.

    Sumi, T.; Motono, S.; Ishida, Y.; Shirahata, N.; Yonezawa, T. “Formation and Optical Properties of Fluorescent Gold Nanoparticles Obtained by Matrix Sputtering Method with a Volatile Mercaptan Molecules in the Vacuum Chamber and Consideration of Their Structures” Langmuir 2015, 31, 4323–4329. DOI: 10.1021/acs.langmuir.5b00294. link

  50. 50.

    Xue, C.; Narushima, T.; Ishida, Y.; Tokunaga, T.; Yonezawa, T. “Double-Wall TiO2 Nanotube Arrays: Enhanced Photocatalytic Activity and in Situ TEM Observations at High Temperature” ACS Appl. Mater. Interfaces 2014, 6, 19924–19932. DOI: 10.1021/am505333v. link

  51. 51.

    Xue, C.; Narushima, T.; Ishida, Y.; Tokunaga, T.; Yonezawa, T. “In Situ TEM Observation of Double-Wall TiO2 Nanotube Arrays at High Temperature” Chem. Lett. 2014, 43, 1514–1516. DOI: 10.1246/cl.140486. link

  52. 52.

    Ishida, Y.; Shimada, T.; Takagi, S. ““Surface-Fixation Induced Emission” of Porphyrazine Dye by a Complexation with Inorganic Nanosheets” J. Phys. Chem. C 2014, 118, 20466–20471. DOI: 10.1021/jp506766t. link

  53. 53.

    Ishida, Y.; Kulasekharan, R.; Shimada, T.; Ramamurthy, V.; Takagi, S. “Supramolecular–Surface Photochemistry: Supramolecular Assembly Organized on a Clay Surface Facilitates Energy Transfer Between an Encapsulated Donor and a Free Acceptor” J. Phys. Chem. C, 2014, 118, 10198–10203. DOI:10.1021/jp502816j.  link

  54. 54.

    Ishida, Y.; Laurent, C.; Antonietti, M.; Shalom, M. “Morphology Control and Photocatalysis Enhancement by the One-Pot Synthesis of Carbon Nitride from Preorganized Hydrogen-Bonded Supramolecular Precursors” Langmuir, 2014, 30, 447–451. DOI: 10.1021/la404101h. link

  55. 55.

    Ohtani, Y.; Ishida, Y.; Ando, Y.; Tachibana, H.; Shimada, T.; Takagi, S. “Adsorption and Photochemical Behaviors of the novel cationic xanthene derivative on the clay surface” Tetrahedron Lett. 2014, 55, 1024–1027. DOI: 10.1016/j.tetlet.2013.12.072. link 

  56. 56.

    Ishida, Y.; Shimada, T.; Takagi, S. “Artificial Light-Harvesting Model in a Self-Assembly Composed of Cationic Dyes and Inorganic Nanosheet” J. Phys. Chem. C 2013, 117, 9154–9163. DOI: 10.1021/jp4022757. link 

  57. 57.

    Takagi, S.; Shimada, T.; Ishida, Y.; Fujimura, T.; Masui, D.; Tachibana, H.; Inoue, H. “Size-Matching Effect on Inorganic Nano-sheets: Control of Distance, Alignment, Orientation of Molecular Adsorption as a Bottom-up Methodology for Nano-materials” Langmuir 2013, 29, 2108–2119. DOI: 10.1021/la3034808 link 【Invited Feature Article, Cover Art】

  58. 58.

    Ishida, Y.; Kulasekharan, R.; Shimada, T.; Takagi, S.; Ramamurthy, V. “Efficient Singlet-Singlet Energy Transfer in a Novel Host-Guest Assembly Composed of an Organic Cavitand, Aromatic Molecules and Clay Nano-sheet” Langmuir 2013, 29, 1748–1753. DOI: 10.1021/la305148j. link

  59. 59.

    Hagiwara, S.; Ishida, Y. Masui, D.; Shimada, T.; Takagi, S. “Photochemical Properties of Cationic Pyrene Derivative and Energy Transfer Reaction between Pyrene and Porphyrin on the Clay Surface” Clay Sci.2013, 17, 7–10. DOI: 10.11362/jcssjclayscience.17.1_7. link

  60. 60.

    Ishida, Y.; Masui, D.; Shimada, T.; Tachibana, H.; Inoue, H.; Takagi, S. “Controlling the Micro-adsorption Structure of Porphyrin Dye Assembly on Clay Surfaces using the “Size-Matching Rule” for Constructing an Efficient Energy Transfer System” ACS Appl. Mater. Interfaces 2012, 4, 811–816. DOI: 10.1021/am201465a. link

  61. 61.

    Ishida, Y.; Masui, D.; Shimada, T.; Tachibana, H.; Inoue, H.; Takagi, S. “The mechanism of the porphyrin spectral shift on inorganic nanosheets: the molecular flattening induced by the strong host-guest interaction due to the “size-matching rule”” J. Phys. Chem. C 2012, 116, 7879–7885. DOI: 10.1021/jp300842f. link

  62. 62.

    Shimada, T.; Hamatani, S.; Onodera, S.; Ishida, Y.; Inoue, H.; Takagi, S. “Investigation of adsorption behavior and energy transfer of cationic porphyrins on clay surface at low lading levels by picosecond time-resolved fluorescence measurement” Res. Chem. Intermed. 2012, 39, 269–278. DOI: 10.1007/s11164-012-0647-1. link

  63. 63.

    Hagiwara, S.; Ishida, Y.; Masui, D.; Shimada, T.; Takagi S. “Unique photochemical behavior of novel tetracationic pyrene derivative on the clay surface” Tetrahedron Lett.2012, 53, 5800–5802. DOI: 10.1016/j.tetlet.2012.08.079. link

  64. 64.

    Ishida, Y.; Shimada, T.; Tachibana, H.; Inoue, H.; Takagi, S. “Regulation of the collisional self-quenching of fluorescence in clay/porphyrin complex by the strong host-guest interaction” J. Phys. Chem. A 2012, 116, 120 65–12072. DOI: 10.1021/jp309502j. link

  65. 65.

    Ishida, Y.; Shimada, T.; Masui, D.; Tachibana, H.; Inoue, H.; Takagi, S. “Efficient excited energy transfer reaction in clay/porphyrin complex toward an artificial light-harvesting system” J. Am. Chem. Soc. 2011, 133, 14280–14286. DOI: 10.1021/ja204425u. link

  66. 66.

    Ishida, Y.; Fujimura, T.; Masui, D.; Shimada, T.; Tachibana, H.; Inoue, H.; Takagi, S. “What lowers the efficiency of an energy transfer reaction between porphyrin dyes on clay surface?” Clay Sci. 2011, 15, 169–174. DOI: 10.11362/jcssjclayscience.15.4_169. link

  67. 67.

    Egawa, T.; Watanabe, H.; Fujimura, T.; Ishida, Y.; Yamato, M.; Masui, D.; Shimada, T.; Tachibana, H.; Inoue, H.; Takagi, S. “Novel methodology to control the adsorption structure of cationic porphyrins on the clay surface using the “size-matching rule”” Langmuir 2011, 27, 10722–10729. DOI: 10.1021/la202231k. link

  68. 68.

    Takagi, S.; Konno, S.; Ishida, Y.; Ceklovsky, A.; Masui, D.; Shimada, T.; Tachibana, H.; Inoue, H. “A unique “Flattening Effect” of clay on the photochemical properties of metalloporphyrins” Clay Sci., 2010, 14, 235–239. DOI: 10.11362/jcssjclayscience.14.6_235. link

  69. 69.

    Takagi, S.; Shimada, T.; Masui, D.; Tachibana, H.; Ishida, Y.; Tryk, D. A.; Inoue, H. “Unique solvatochromism of a membrane composed of a cationic porphyrin-clay complex” Langmuir 2010, 26, 4639–4641. DOI: 10.1021/la1007928. link

more

Reviews & Accounts

  1. 70.

    Yohei Ishida “Atomic-Scale Imaging of Clay Mineral Nanosheets and Their Supramolecular Complexes through Electron Microscopy: A Supramolecular Chemist’s Perspective” Langmuir 2024, 40, 6065–6076. https://doi.org/10.1021/acs.langmuir.3c03779 link 【Invited Feature Article】

  2. 71.

    Ishida, Y. “Manipulation of Precise Molecular Arrangements and Their Photochemical Properties on Inorganic Surfaces via Multiple Electrostatic Interactions” Bull. Chem. Soc. Jpn.2021, 94, 2886–2897. DOI: 10.1246/bcsj.20210303. link 【Award Account, CSJ Award for Young Chemists 2020, Cover Art】

  3. 72.

    秋田郁美、石田洋平、米澤徹 「単層粘土鉱物ナノシートの原子分解能ADF-STEM観察と電子線照射耐性」ナノ学会会報、2020, 19,9–13. link

  4. 73.

    石田洋平 「無機ナノシート表面で誘起される特異な分子光化学挙動」、ナノ学会会報、2018, 16, 41–45. link

  5. 74.

    Ishida, Y.; Corpuz, R. D.; Yonezawa, T. “Matrix Sputtering Method: A Novel Physical Approach for Photoluminescent Noble Metal Nanoclusters” Acc. Chem. Res. 2017, 50, 2986−2995. DOI: 10.1021/acs.accounts.7b00470. link

  6. 75.

    石田洋平、松本大地、米澤徹 「マイクロ波液中プラズマ法による可視光応答型光触媒ナノ粒子群の合成」、Acc. Mater. Surf. Res. 2017, 2, 137­–144.

    https://www.hyomen.org/wp-content/uploads/papers/vol2_no5/yonezawa/yonezawa_35.pdf  link

  7. 76.

    Tokieda, D.; Tsukamoto, T.; Ishida, Y.; Ichihara, H.; Shimada, T.; Takagi, T. “Unique fluorescence behavior of dyes on the clay minerals surface: Surface Fixation Induced Emission (S-FIE)” J. Photochem. Photobiol. A 2017, 339, 67–79. DOI: 10.1016/j.jphotochem.2017.01.013. link

  8. 77.

    石田洋平、米澤徹「無機ナノシートを基板とした有機分子二次元配列と光化学反応」、高分子論文集(総合論文)、2016, 73, 12–18. DOI: 10.1295/koron.2015-0051. link

  9. 78.

    石田洋平「無機ナノシート上での分子配列制御と光化学反応」、化学と工業 飛翔する若手研究者、2016, 69, 983–984. link

  10. 79.

    石田洋平、米澤徹「マトリクススパッタリング法による特異な蛍光性ナノフルイド」、化学工学、2016, 80, 156–159. link

  11. 80.

    石田洋平「ナノシート上での分子集合構造制御により達成される高効率光化学反応過程」、日本化学会研究会低次元系光機能材料研究会ニュースレター、2016, 12, 10-12. link

  12. 81.

    Ishida, Y. “Manipulation of Supramolecular 2D Assembly of Functional Dyes Toward Artificial Light- Harvesting Systems”

    Pure Appl. Chem. 2015, 1, 3–14. DOI: 1515/pac-2014-0906. link 【Award Account, IUPAC-SORVAY International Prize for Young Chemist 2014】

more

Books

  1. 82.

    Ishida, Y.; Takagi, S. “Surface–Fixation Induced Emission” in “Handbook of Aggregation-Induced Emission” Editors: Tang, Y. and Tang, B. Z., Wiley, 2022, Volume 1, Chapter 7, 203–220. link

  2. 83.

    Ishida, Y.; Takagi, S. “Tuning emission properties by dye encapsulation into layered silicate” in “Dyes and Photoactive Molecules in Microporous Systems” Editors: Martínez, M. V. and López, A. F., Springer Nature, 2020, chapter 5, 185–204. link

  3. 84.

    石田洋平、高木慎介「錯体化合物辞典」、朝倉書店、2019、p43. link

  4. 85.

    Ishida, Y.; Takagi, S. “Photoenergy conversion” in “Inorganic Nanosheets and Related Materials: Fundamentals and Applications of Two‐Dimensional Systems”, Editors: Nakato, T.; Kawamata, J.; Takagi, S. Springer, 2018, Chapter II–6. link

  5. 86.

    石田洋平、高木慎介 「光化学の舞台としての無機ナノシート」、「CSJカレントレビュー第25号二次元物質の科学」化学同人、2017、11章. link

  6. 87.

    石田洋平、嶋田哲也、高木慎介
    「ポルフィリンを用いた光捕集材の開発”」、「光合成研究と産業応用最前線 第2編 産業応用を見据えた実用化研究–水素生成、人工光合成、有機太陽電池」

    エヌ・ティー・エス、2014、第1章第2節. link

  7. 88.

    石田洋平、高木慎介
    「無機ナノシートの表面構造を利用した分子配列制御—人工光合成系構築を目指して−」 監修:笹井亮、高木克彦「革新機能材料の開発と応用展開—粘土鉱物、ナノシート、メソ孔シリカと有機系層状材料を利用して—」

    シーエムシー出版、2012、46–55. link

more

JOIN US

We are always looking for talented postdoctoral researchers and PhD candidates who are interested in the concept of inorganic proteins, and 4 subthemes outlined here, who like to work in an interdisciplinary cutting-edge environment. If you are interested in joining, please Contact us directly to explore fellowship opportunities (please include a CV, a cover letter describing past accomplishments, research interests and goals, and contact information of two academic references and their relationship to you).

Postdocs
JSPS PD (for International)
Graduate students
MEXT Research Students (Government-sponsored international students)
Open positions
Specific positions will be advertised here when available.
Research Assistant Professor / Postdoc

LOCATION

3F of Building-I, 6-1 Kasuga-koen, Kasuga, Fukuoka, Japan 816-8580.
Our labs and offices are located in the building-I. a detailed route description is available

here